Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Molecules ; 26(20)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1518621

ABSTRACT

In continuation of our previous effort, different in silico selection methods were applied to 310 naturally isolated metabolites that exhibited antiviral potentialities before. The applied selection methods aimed to pick the most relevant inhibitor of SARS-CoV-2 nsp10. At first, a structural similarity study against the co-crystallized ligand, S-Adenosyl Methionine (SAM), of SARS-CoV-2 nonstructural protein (nsp10) (PDB ID: 6W4H) was carried out. The similarity analysis culled 30 candidates. Secondly, a fingerprint study against SAM preferred compounds 44, 48, 85, 102, 105, 182, 220, 221, 282, 284, 285, 301, and 302. The docking studies picked 48, 182, 220, 221, and 284. While the ADMET analysis expected the likeness of the five candidates to be drugs, the toxicity study preferred compounds 48 and 182. Finally, a density-functional theory (DFT) study suggested vidarabine (182) to be the most relevant SARS-Cov-2 nsp10 inhibitor.


Subject(s)
Antiviral Agents/chemistry , Biological Products/chemistry , SARS-CoV-2/metabolism , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites , Biological Products/metabolism , Biological Products/therapeutic use , COVID-19/pathology , Density Functional Theory , Humans , Ligands , Molecular Docking Simulation , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , SARS-CoV-2/isolation & purification , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/therapeutic use , Vidarabine/chemistry , Vidarabine/metabolism , Vidarabine/therapeutic use , Viral Regulatory and Accessory Proteins/metabolism , COVID-19 Drug Treatment
2.
J Med Case Rep ; 15(1): 90, 2021 Feb 19.
Article in English | MEDLINE | ID: covidwho-1090621

ABSTRACT

BACKGROUND: Very little is known about the risk that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection poses to cancer patients, many of whom are immune compromised causing them to be more susceptible to a host of infections. As a precautionary measure, many clinical studies halted enrollment during the initial surge of the global Novel Coronavirus Disease (COVID-19) pandemic. In this case report, we detail the successful treatment of a relapsed and refractory multiple myeloma (MM) patient treated with an anti-B cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T cell therapy immediately following clinical recovery from COVID-19. CASE PRESENTATION: The 57 year old Caucasian male patient had a 4-year history of MM and was considered penta-refractory upon presentation for CAR T cell therapy. He had a history of immunosuppression and received one dose of lymphodepleting chemotherapy (LDC) the day prior to COVID-19 diagnosis; this patient was able to mount a substantial immune response against the SARS-CoV-2 virus, and antiviral antibodies remain detectable 2 months after receiving anti-BCMA CAR T cell therapy. The recent SARS-CoV-2 infection in this patient did not exacerbate CAR T-associated cytokine release syndrome (CRS) and conversely the CAR T cell therapy did not result in COVID-19-related complications. One month after CAR T cell infusion, the patient was assessed to have an unconfirmed partial response per International Myeloma Working Group (IMWG) criteria. CONCLUSION: Our case adds important context around treatment choice for MM patients in the era of COVID-19 and whether CAR T therapy can be administered to patients who have recovered from COVID-19. As the COVID-19 global pandemic continues, the decision of whether to proceed with CAR T cell therapy will require extensive discussion weighing the potential risks and benefits of therapy. This case suggests that it is possible to successfully complete anti-BCMA CAR T cell therapy after recovery from COVID-19. CRB-402 study registered 6 September 2017 at clinicaltrials.gov (NCT03274219).


Subject(s)
B-Cell Maturation Antigen/immunology , COVID-19/physiopathology , Immunotherapy, Adoptive/methods , Multiple Myeloma/therapy , Receptors, Chimeric Antigen/immunology , Antibodies, Viral/immunology , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Cough , Cyclophosphamide/therapeutic use , Disease Progression , Fever , Hospitalization , Humans , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Multiple Myeloma/complications , SARS-CoV-2 , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL